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Chapter 10. The Systematic Application of a 
Multivariate Perspective to Understanding Plant 
Diversity Patterns in Ecological Communities 
 

This chapter illustrates the systematic application of a multivariate 
perspective using SEM to explore a topic. In this presentation, the 
statistical details of the analyses will be ignored; these have been 
presented in earlier chapters or can be found in the various publications 
referenced throughout. Here, the emphasis is on illustrating the broad 
enterprise of developing, evaluating, refining, and expanding multivariate 
models in order to understand system behavior and regulation. 
Throughout, the focus will be on the research enterprise rather than the 
analytical details. Thus, the philosophy and practice of SEM will be in the 
forefront, while the analysis of covariances, maximum likelihood, and 
mathematical details will be deemphasized.  
 
Background Studies and Findings 

In 1992, Laura Gough and I conducted a study designed to examine 
the relationship between plant community biomass and species richness. 
This work was conducted in coastal marsh communities. The purpose of 
this study was to first characterize the relationship between biomass and 
richness. Then we planned to determine the role of competition in 
controlling the relationship. We expected that we would find a unimodal 
relationship between biomass and richness, primarily because of several 
key papers that had been published previously (Al-Mufti et al. 1977, 
Huston 1980, Wheeler and Giller 1982, Moore and Keddy 1989, Wisheu 
and Keddy 1989, Shipley et al. 1991, and Wheeler and Shaw 1991). We 
also expected this relationship because there were several competing 
theories attempting to explain this phenomenon (Grime 1979, Huston 
1979, Tilman 1982, Taylor et al. 1990, and Keddy 1990). Fig. 10.1 
presents one of the early examples that inspired much of the subsequent 
work on this topic. A further influence on us at that time was work by Paul 
Keddy and his colleagues (see above references) who were attempting to 
establish general, quantitative, predictive relationships between 
community biomass and richness. 
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Figure 10.1. Example of the relationship between biomass, measured as 
the maximum standing crop including litter) and species richness (SD, or 
species density) presented by Al-Mufti et al. in 1977. Solid circles 
represent woodland herbs, open circles represent grasslands, and triangles 
represent tall herbs of open areas. 
 

Combining our data from two coastal riverine systems with the data of 
one of our colleagues, Kathy Taylor, we found a pattern rather unlike the 
one we expected (Fig. 10.2). Instead of a unimodal curve, we found a 
unimodal envelope (see additional discussion of this relationship in Marrs 
et al. 1996). Also, we found biomass to be rather unimportant as a 
predictor, but found that species richness was strongly correlated with 
microelevation and sediment salinity and, to a lesser degree with soil 
organic matter. Table 10.1 shows the results of the multiple regression that 
we performed using all of the measured predictor variables. The fit of this 
multiple regression model to the data is shown in Figure 10.3. 
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Figure 10.2. Relationship between total aboveground community biomass 
(live + dead) per m2 and number of species per m2 found by Gough et al. 
(1994) in coastal marsh systems. 
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Figure 10.3. Fit of data to the multiple regression model in Table 10.1 
(from Gough et al. 1994). 
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Table 10.1. Multiple regression results for species richness as a function of 
environmental variables (modified from Gough et al. 1994). 
===================================================== 
Predictor Coefficient Std Error Cumulative P < 
Variables     R-square 
—————————————————————————————— 
Constant -3.90  1.084    0.001 
Biomass -0.0011 0.0003  0.02  0.001 
Elevation   3.10  0.377  0.57  0.001 
Salinity   0.51  0.137  0.69  0.001 
Soil organic   0.052  0.011  0.82  0.001 
—————————————————————————————— 
 

Based on the results we obtained and our familiarity with wetland 
systems, we formulated a multivariate conceptual model (Figure 10.4). We 
further supported this model with additional data about the existing 
species pools (we used the term "potential richness") and how they varied 
with salinity. To quote Gough et al. (1994), 

In conclusion, in this study we found that biomass was not an 
adequate predictor of species richness. One reason for this 
inadequacy appears to be that while stresses such as flooding and 
salinity may greatly reduce the pool of potential species that can 
occur at a site, those species that have evolved adaptations to 
these factors may not have substantially reduced biomass. Thus, 
we recommend that models developed to predict species richness 
should incorporate direct measurements of environmental factors 
as well as community attributes such as biomass in order to 
increase their applicability. 
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Figure 10.4. Hypothesized conceptual model of factors controlling species 
richness in plant communities. 
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Multivariate Hypothesis Formulation and Evaluation 
 
Initial Evaluations of a Multivariate Model at the Pearl River 

In 1993, Bruce Pugesek and I initiated a more extensive study 
designed to evaluate the ideas presented in Figure 10.4 using structural 
equation modeling. The system to which we wished to apply this model 
was a coastal riverine marsh landscape located on the shore of the Gulf of 
Mexico (Fig. 10.5). This landscape contains a number of conspicuous 
environmental gradients, including gradients in salinity (salt marsh to 
fresh marsh), microelevation (from plants in deep water to those growing 
on raised levees), and soil organic content (from sandy soil deposits to 
organic muck sediments. We also knew from previous studies that natural 
disturbances were common and resulted from the activities of wild 
mammal populations as well as from flooding and storm effects. Thus, this 
system contained a variety of stresses and disturbances of the sort 
commonly invoked in theories about diversity regulation. 
 

 
 

Figure 10.5. Aerial photograph of the Pearl River marsh complex, which 
was the site of these investigations. 
 

The next step in the process was to convert the conceptual model 
(Figure 10.4) into a construct model, as represented in Figure 10.6. The 
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process of specifying a construct model is an important step forward in 
theory maturation. The conceptual model presents important ideas, 
however, it is very general and the meanings of the terms are somewhat 
vague. This is not to say that the construct model in Figure 10.6 is without 
ambiguity. Models always have a context, some set of physical 
circumstances under which the model makes sense. I have argued 
previously (Grace 1991) that the context for models are often not clearly 
specified in ecological theories, leading to irresolvable debate. The 
application of structural equation modeling seeks to make concepts and 
context tangible in stages, which preserves both general and specific 
perspectives on the problem. This topic will be discussed in more detail in 
Chapter 12 as it relates to the concept of theory maturation.  
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Figure 10.6. Construct model showing major factors presumed to be 
controlling species richness (taken from Figure 1 in Grace and Pugesek 
1997). ABIOTIC refers to abiotic environmental variables, DIST refers to 
disturbances of vegetation by animals and flooding, BIOM refers to 
community biomass, and RICH refers to species richness.  

 
One thing that happens when we specify our construct model is that 

there is an immediate expectation that the concepts represented will have 
to be made operational. This means it is soon going to be necessary to 
specify the meaning of the concepts by describing exactly how they will 
be measured. This reality suggested to us a distinction that we wanted to 
make that was not specified in the conceptual model, that there are two 
distinctly different kinds of environmental variables, abiotic conditions 
and disturbances. Making this distinction was actually not a mandatory 
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requirement, as the use of composites (Chapter 6) does allow us a method 
for dealing with highly heterogeneous concepts. However, since much 
attention has been paid to the effects of disturbance versus the effects of 
stress on richness, the distinction between abiotic factors and disturbance 
was one we thought would be valuable.  
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Figure 10.7. Initial structural equation model with latent variables 
representing concepts and observed variables representing indicators. 

 
 The next step in the process was to develop the structural equation 

model (Figure 10.7). As indicated by the model structure, we specified 
that abiotic conditions would be measured by combining specific abiotic 
measurements into indices. We also proposed to characterize the 
disturbance regime by quantifying the observable signs of disturbance in 
the vegetation. To measure community biomass, we decided to measure 
the standing crop of plant material, which was the parameter measured by 
Al-Mufti et al. (1977), and to also measure the amount of light passing 
through the vegetation, as an additional measure of the quantity of 
vegetation. Richness was specified as being measured simply by the 
number of species we found in 1-m2 plots.  

An important concept associated with SEM is that the observed 
variables are only required to be indicators of the processes and 
parameters of interest rather than perfect measures. In order for a 
measured variable to serve as an adequate indicator, it is only necessary 
for the relative values of that variable to be correlated with the underlying 
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process of mechanistic importance. For example, when we specify that the 
conceptual variable DIST would have an effect on BIOM, what is meant is 
that the disturbance regime has an effect on community biomass. When a 
measure of recent disturbance is used as an indicator of DIST, we are 
proposing that recent indications of disturbance correlate with the 
disturbance regime over a period of time reflected by the vegetation.  

Once the initial structural equation model shown in Figure 10.7 was 
formulated, we designed a sampling scheme and schedule. Data were then 
collected over a two-year period to test this model. Only the results from 
the first year were used in Grace and Pugesek (1997), with the second 
year's data saved for a subsequent test of whether the model results would 
hold up over time and how the system changes between years. Data 
collected included sediment salinity, site microelevation, soil organic and 
mineral content (components of the abiotic indices), recent disturbance 
(dist.), measured as the percent of plot disturbed, above-ground biomass 
per m2 (massm2), percent of full sunlight reaching the ground surface in 
densest part of plot (lightlo), percent of full sunlight reaching the ground 
surface in sparsest part of plot (lighthi), and the number of species in a 
plot (rich.). 

As is often the case when evaluating multivariate models, the fit 
between our data and the initial model indicated that it was not adequate. 
Simply put, our data were not consistent with the expectations implied by 
the initial model. The part of the hypothesis in Figure 10.7 that failed was 
the proposition that biomass and light readings can both be used to 
represent a single conceptual variable. The symptoms of this failure were 
that lighthi and lightlo were highly correlated, but that massm2 was not 
well correlated with either light variable. Because of this, we reformulated 
our model as shown in Figure 10.8. An important lesson was learned here, 
regardless of your conceptualization of the problem, if two variables are 
not consistently and equally well correlated, they will not function as 
multiple indicators of a single conceptual variable. Of course, we could 
have used the heterogeneous indicators to represent a composite. 
However, that did not fit with our objectives in this analysis.  

Once the model was reformulated and reanalyzed, another 
inconsistency between model and data emerged. A large residual 
correlation between DIST and LIGHT was found to exist. As was 
discussed in Chapter 8 (see Figure 8.12), this particular residual represents 
an effect of disturbance on plant morphology that moderates the effect of 
disturbance on light. In order to proceed further, it was necessary to 
include a pathway from DIST to LIGHT. Only then was there a consistent 
match between the relationships in the model and those in the data. 
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Figure 10.8. Modified full model defining BIOM and LIGHT as separate 
conceptual variables (from Grace and Pugesek 1997). 
 
The results shown in Figure 10.9 represent the partitioning of covariances 
in the data as specified by the relationships in the model. Since these 
results were obtained using a maximum likelihood statistical procedure, 
they satisfy the criterion of being a simultaneous solution for all 
relationships. It is not my purpose here to describe all the ecological 
interpretations of these results. The interested reader can consult the paper 
by Grace and Pugesek (1997). What I would like to point out, however, is 
that while this model fits the data, we must conclude that our originally 
formulated model (Fig. 10.7) did not. Thus, further evaluation is still 
needed using an independent dataset before we can conclude that our 
accepted model is valid for the system sampled. As this rather weak 
conclusion reveals, the demands that SEM places on empirical validation 
are quite stringent. Stated in another way, the model evaluation philosophy 
pushes the scientist rather hard to demonstrate that their results have 
consistent validity (i.e., consistent applicability in different places and 
over time), not just local application.  
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Figure 10.9. Results for accepted model. Standardized partial regression 
coefficients are given. The (+/-) next to the path from LIGHT to RICH 
signifies that this path was unimodal. 
 
A More Detailed Examination of the Data 

As mentioned earlier, the construct model presented in Figure 10.6 
actually represents a family of models that can be represented using a 
single dataset. To illustrate this point, Figure 10.10 shows the results of a 
more specific and detailed model in which the abiotic factors were 
represented individually. The results are based on the exact same data set 
used to arrive at the more general results in Figure 10.9, except for the fact 
that the more general model combined the individual abiotic data into 
indices. Again, no discussion of the ecological interpretations will be 
presented here. Later in the chapter, I will present an example that used a 
derivative of this model for the purpose of exploring the role of historical 
factors in controlling species richness. 
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Figure 10.10. Results for a more specific version of the model. 
 
An Experimental Test of the Multivariate Model 

There exists a certain amount of experimental evidence that supports 
the dependency assumptions in the above models (for a review of some of 
this literature, see Grace 1999). This is not to say that there are no 
feedback processes that have been omitted; for example, a reciprocal 
effect of species richness on community biomass. What has been assumed 
is that the relationship between biomass and richness is asymmetric, with 
the predominant influence being in the direction specified. Regardless, the 
principle of theory maturation pushes us to ask whether the results from 
the nonexperimental studies so far described have any predictive power. 
Testing predictions based on our accepted models (Fig. 10.9 and 10.10) 
not only addresses the question of whether there is consistent validity but 
also represents an opportunity to further refine our model and to determine 
the limits of its applicability. 

Between 1993 and 1995, Laura Gough devised and conducted an 
extensive experimental study designed to manipulate a number of key 
variables believed to control species richness in the Pearl River system. 
The results from these experiments were then used in two ways to evaluate 
multivariate hypotheses (Gough and Grace 1999). First, her results were 
compared with predictions from a model like the one in Figure 10.10, 
except that it was based on the second year's data collected by Grace and 
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Pugesek. Second, the results were represented as structural equation model 
of its own. This model was presented in Chapter 9 and can be seen in 
Figure 9.11.  

Figure 10.11 presents two graphs showing how observed values of 
species richness in Gough’s experiments compared to those predicted 
from nonexperimental data in the broader landscape. When all plots were 
included (Fig 10.11A), there was considerable scatter and only 35% of the 
variance was explained. Further analyses showed that this was due to the 
fact that fencing and fertilizing caused effects that were not quantitatively 
predicted. With plots subjected to either of these treatments removed (Fig. 
10.11B), the remaining treatments, which included those subjected to 
changes in salinity and flooding as well as the controls, demonstrated a 
stronger correlation between predicted and observed (R2 = 0.63).  
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Figure 10.11. Comparisons between predicted and observed species 
richness taken from Gough and Grace (1999). (A) All plots, (B) excluding 
fertilized and fenced plots.  
 

Details of the interpretations of the experimental study can be found in 
Gough and Grace (1999). What should be pointed out here, however, is 
that many aspects of the model of this system based on nonexperimental 
data were supported by the results of the experimental treatments. It was 
our interpretation that where the model based on nonexperimental data 
failed to predict accurately is for conditions that were experimentally 
created, but that did not exist naturally in the field. In other words, it 
appears that the nonexperimental data can be used to reveal how factors 
relate in the unmanipulated community while experimental treatments 
permit one to ask the question, "What will happen if we change the 
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conditions in the system?" Thus, the combination of experimental and 
nonexperimental model building and comparison is complementary, each 
with a role to contribute. 
 
A Search for Evidence of Historical Effects on Species Richness in the 
Pearl River System 

In 1994, Glenn Guntenspergen and I set out to see if we could discover 
the existence of additional factors that might explain variation in plant 
species richness at the Pearl River study area. Of particular interest to us 
were factors that could be related to landscape position and that might 
reflect past events. Prior work (Brewer and Grace 1990) had suggested 
that periodic tropical storms, which are common in this region, leave a 
long-lasting effect on plant community zonations. To examine the 
possibility that this might be important in understanding diversity patterns 
at the Pearl River, we established a sampling scheme that placed plots 
relative to the mouth of the Middle Pearl River (downstream to upstream) 
and relative to the river channel (streamside to interior). The assumptions 
that we wished to test were (1) that distance from the river’s mouth would 
reflect the effects of past saltwater intrusions from tropical storm events 
and (2) that distance from the stream channel would reflect past overbank 
flooding events. It is important to point out, that the specific question we 
were asking was not if these events happened, but whether they had 
lingering effects of richness that were not reflected in current 
environmental conditions. 

To address this question, we first developed a multivariate model that 
included a minimum set of the best predictors of richness (based on the 
previous experience of Grace and Pugesek 1997). This model included 
soil salinity, microelevation, disturbance, and light readings (as a measure 
of plant abundance). Then we asked, if the inclusion of landscape position 
variables might explain additional variance in richness. This model and its 
results were presented in Chapter 8 as an illustration of sequential 
hypothesis testing (see Figure 8.6) and will not be reproduced here. What 
is important to the current discussion is that we found that distance from 
the mouth of the river did explain an additional 12% of the observed 
variance in richness, while distance from the river’s edge did not 
contribute new information. Based on these findings, we concluded that 
landscape position could reveal effects of past events that influence 
current diversity patterns. 
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A Further Examination of Spatial Effects 
At a later time, Glenn Guntenspergen and I returned to the question of 

whether there were hidden controls of richness that could be detected from 
landscape position. This time, we were joined in the search by an eager 
group of graduate students at the University of Louisiana who were 
involved in a multicampus course in Biocomplexity offered by the 
National Center for Ecological Analysis and Synthesis. Together, we 
reexamined the earlier data Guntenspergen and I collected to see if the 
grids of plots at each site along the river held additional clues. This time, 
the question we wished to address was whether small-scale historical 
effects might show up as positive correlations in richness among adjacent 
plots that were not related to known environmental gradients (Mancera et 
al. 2005).  

Starting with an examination of the data, we determined that there was 
spatial autocorrelation among plots. In other words, we found that plots 
that were spatially close were similar to one another in richness more often 
than would be expected by chance. Such spatial autocorrelation has been 
reported before (Legendre 1993) and is likely very common. It is entirely 
possible, of course, that such spatial autocorrelation in richness simply 
reflects spatial autocorrelation in controlling environmental conditions. As 
seen in Figure 10.12, the relationship between spatial patterns in richness 
and spatial patterns in environmental variables represents an important 
problem for interpretations. Do the spatial patterns represent a tight 
mapping to spatial variations in environmental conditions or do they 
represent historic effects, such as dispersal? To address this problem we 
first factored out the variation in species richness that could be ascribed to 
known environmental factors and then tested that residual richness still 
showed spatial autocorrelation. This sequential hypothesis testing is 
represented in Figure 10.13, with the test of neighbor richness represented 
by a “ghost” variable, indicating that its effects was determined after the 
effects of the other variables had been considered. 

The analyses showed that once environmental factors were considered, 
spatial autocorrelation in species richness disappeared. This means that we 
were unable to find any evidence of small-scale historical effects or other 
unmeasured causes of spatially-controlled variations in richness in this 
system.  
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Figure 10.12. Topographic plots of spatial variation in species richness 
and other variables at one of the five sample sites along the Pearl River, 
based on sampling in a 5 x 7 grid of 1m2 plots. In these figures, rows are at 
different distances from the river's edge (in meters) and columns are at 
different locations along the river at a site (also in meters).  
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Figure 10.13. Model used to evaluate relationship between species 
richness and contemporary variables at each of the five grid sample sites at 
the Pearl River. PABUN represents plant abundance. The "ghost" variable, 
Neighbor Richness, was evaluated for a relationship to RICH after the 
effects of all other variables were removed, representing a sequential 
variance explanation test. 
 
Applicability of Findings to Other Systems 

More recently, the questions that have interested me are (1) how plant 
diversity is regulated in a wide array of systems and (2) whether there are 
general features that apply broadly across systems. In a study of meadows 
in Finland, Grace and Jutila (1999) examined the relationships of plant 
richness to both grazing and environmental gradients (see Figure 7.2). 
These results generally indicate support for a common construct model 
such as shown in Figure 10.6. General support for such a construct model 
was also found by Grace et al. (2000) in coastal tallgrass prairie, though 
the influence of recent disturbances were minor in this system. In a study 
of woodlands in Mississippi, Weiher et al. (2004) found that the presence 
of trees in a prairie grassland moderates soil and biomass effects on 
herbaceous richness, requiring an alteration of the general construct model 
for such situations. Investigations of diversity regulation in California 
chaparral (Keeley and Grace unpublished) revealed both similar construct 
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relations, along with the importance of landscape features, and the 
increasing importance of spatial heterogeneity with increasing plot sizes. 
In other studies, the overwhelming importance of abiotic constraints on 
diversity patterns of serpentine endemics (Harrison et al. unpublished) 
suggest a different balance of forces at play for plant occupying extreme 
environmental conditions. Altogether, these studies suggest support for 
certain general features across systems, and numerous specific factors of 
importance in particular situations or contexts. We will return to the 
question of generality in our final chapter where we consider how SEM 
methods may evolve to permit the evaluation of very general models that 
can apply across systems diverging in specific properties. 
 
Summary 

This chapter has sought to give the reader an insight into an example 
of the ecological perspective that can be created through a committed 
approach to multivariate model development, evaluation and refinement. 
The point of presenting such an extensive example is not to imply that all 
these steps are required. Instead, what I hope to have accomplished is to 
show the reader how the adoption of a multivariate perspective opens up a 
new way of learning about ecological systems. It has been my personal 
experience that the pursuit of a multivariate understanding has greatly 
enhanced the ecological insights I have gained. I am eager to extend these 
studies to include additional variables and pathways, such as reciprocal 
interactions between biomass and richness, exploration of the role of 
habitat variability, and interactions with other trophic levels. In Chapter 
12, I followup on this extended example with a more philosophical 
discussion of how multivariate theories can contribute to the maturation of 
ecological science. 
 
 


