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--------------------------------------------- 

1. Getting Started 

A few basic points: 

Lavaan  is an R package for classical structural equation modeling (SEM).  

An elementary introduction to SEM designed for those in the natural sciences can be found in 

Grace (2006). Another treatment for biologists with slightly different emphases has been written 

by Shipley (2000). For first time users in the social sciences, Kline’s (2010) book provides an 

good entry-level treatment. Technical fundamentals for classic SEM are presented in Bollen 

(1989). A new handbook is Hoyle (2012). 

Links to documentation on lavaan can be found at the lavaan site: http://lavaan.ugent.be/. 

Included at that site is a more extensive introduction “lavaanIntroduction.pdf” and a technical 

manual “lavaanIntroduction.pdf”. 

Lavaan is generally updated fairly frequently, so it is good to keep your version of R up to date. 

You can download the latest version of R from: http://cran.r-project.org/. 

The lavaan package is currently still a beta-version package and not considered complete. That 

said, it is approaching the functionality of some commercial packages. 

One feature of lavaan is that it does not require you to be an expert in R. You do need to know 

how to import datasets into R and how to execute commands. You also need to know how to 

install and load packages. The lavaan syntax is simple and requires only general background 

knowledge, not a deep familiarity with the R language.  

The numerical results of the lavaan package are typically very close, if not identical, to the 

results of the commercial package Mplus. If you wish to compare the results with those obtained 

by other SEM packages, there are options available for doing so. 

In this presentation, as is common in the biometric tradition of structural equations, the inclusion 

of latent variables in models is considered an advanced topic and covered later.  

This presentation focuses on the lavaan command language and does not attempt to provide 

theoretical background or interpretational information about SEM.

http://lavaan.ugent.be/
http://cran.r-project.org/
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2. Types of lavaan Commands 

There are three types of command statements to use when working with lavaan, (a) specification 

statements, (b) estimation statements, and (c) statements for extracting results. The reader should 

be aware that there are additional steps in the SEM process, particularly leading from theory to 

model specification and also following the extraction of results (Grace et al. 2010, Grace et al. 

2012). Here is a preview of the three main lavaan commands, which will be explained 

subsequently. 

### Preview of three types of lavaan commands 

### Command type 1: specify model by declaring an object 

model <- 'y1 ~ x1 + x2      # model defined in quotes 

          y2 ~ y1 + x2' 

 

### Command type 2: estimate parameters for the model 

model.est <- sem(model, data=data.mod1)  # sem command is used 

 

### Command type 3: extract results from estimated model object 

summary(model.lav2.est, rsq=T)       # summary of results 

 

a. Specification of a Model 

At the heart of the lavaan package is the model ‘syntax'. The model syntax is a description of the 

model to be estimated. In this section, I briefly present the lavaan model syntax for modeling 

with observed variables. More syntax will be introduced in later sections. 

In the R environment, a regression formula has the following form: 

y ~ x1 + x2 

In lavaan, a typical model is simply a set (or system) of equations contained within quotation 

marks. Here is a model (model.1) and its syntax: 

 

 

 

 

 

 

 

 

model.1 <- ‘y1 ~ x1 + x2 

            y2 ~ y1 + x2’ 
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Note that the equations (there are two in this example) are “string literals”, i.e., by placing them 

in quotes we make them essentially character statements. Lavaan interprets the statements in 

their parts, recognizing that there are three variables (y1, x1, and x2) and two operators (~, +) in 

the first literal and three variables (y2, y1, and x2) and two operators  (~, +)  in the second as 

well. Also note exogenous variables are allowed to correlate by default in lavaan. 

The four basic types of specification operators in lavaan are: 

formula type    operator   operator stands for 

regression         ~    “regressed on” 

correlation        ~~    “correlated with” 

intercept        ~ 1    “estimates intercept” 

latent variable definition      =~    “is measured by” 

create a composite       <~    “is caused by” 

 

b. Estimation/Fitting 

Lavaan has command statements for estimating different types of models. The most basic 

command is “sem”. Here I show how we can estimate the parameters in the above model. 

model.1.ests <- sem(model.1, data = data.mod1) 

Here, “model.1” refers to the model specification assigned to the object  and “data.mod1” is the 

name for the data object in R.  

 

c. Extracting Results 

There are a variety of ways of extracting results from the estimated object. Here is the most basic 

extraction statement. 

summary(model.1.ests) 

Asking for a summary of the results gives the text below. Here we can see that lavaan converged 

to a stable solution. Other basic information is given.  
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> summary(model.1.ests) 

lavaan (0.4-12) converged normally after 40 iterations 

 

  Number of observations                            90 

 

  Estimator                                         ML 

  Minimum Function Chi-square                   23.222 

  Degrees of freedom                                 1 

  P-value                                        0.000 

 

Parameter estimates: 

 

  Information                                 Expected 

  Standard Errors                             Standard 

 

                   Estimate  Std.err  Z-value  P(>|z|) 

Regressions: 

  y1 ~ 

    x1                0.001    0.004    0.327    0.744 

    x2               -0.083    0.019   -4.440    0.000 

  y2 ~ 

    y1                9.910    5.083    1.950    0.051 

    x2               -2.531    0.976   -2.593    0.010 

 

Variances: 

    y1                0.080    0.012 

    y2              187.212   27.908 

 

 

3. More Specification Options 
There are a number of additional options available that permit further specifications. Here I 

present several of the basic ones. More advanced commands are presented in a later section. 

 

     a. Correlating Errors 
Let’s imagine a case where we have two endogenous responses that have a residual 

correlation/covariance. In the case where there is residual covariation (literally, a 

correlation/covariance between the prediction residuals caused by some other unspecified factor 

influencing both variables), we represent it as an error correlation/covariance. 

 

model.2 <- ‘y1 ~ x1 + x2 

            y2 ~ x2      

            y1 ~~ y2’    #error covariance 
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It is important to note here the common convention that when a correlation is specified between 

two endogenous variables, it is understood that the correlation is a residual correlation and 

therefore, a correlation between their prediction errors (strictly speaking in causal modeling, 

what statisticians would call prediction errors represent other factors affecting a variable). 

Results presented below include a covariance between y1 and y2, which has now been requested. 

 

> summary(model.2.ests) 

lavaan (0.4-12) converged normally after 35 iterations 

 

  Number of observations                            90 

 

  Estimator                                         ML 

  Minimum Function Chi-square                   22.879 

  Degrees of freedom                                 1 

  P-value                                        0.000 

 

Parameter estimates: 

 

  Information                                 Expected 

  Standard Errors                             Standard 

 

                   Estimate  Std.err  Z-value  P(>|z|) 

Regressions: 

  y1 ~ 

    x1               -0.003    0.004   -0.763    0.446 

    x2               -0.087    0.019   -4.643    0.000 

  y2 ~ 

    x2               -3.363    0.896   -3.752    0.000 

 

Covariances: 

  y1 ~~ 

    y2                0.945    0.432    2.189    0.029 

 

Variances: 

    y1                0.081    0.012 

    y2              195.119   29.087 

 

     b. Naming Parameters 
There are a number of operations that require us to name parameters. By naming parameters, we 

can then specify their values or constrain their values using constraint equations.  

 

Actually, lavaan names parameters automatically using the convention shown in output above. 

For example, the parameter for the effect of x1 on y1 is named “y1 ~ x1”.  

 

It can be useful to name parameters in the more conventional way. Since we are used to 

expressing equations like this, 

 

y1 = b1*x1, 
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we might prefer “b1” over “y1 ~ x1” as a parameter name. The simplest way to do this is to 

premultiply a predictor with the name being assigned to the parameter. Here we give the 

parameters in model.2 the names b1-b5. Note, parameter labels must start with a letter! 

 

 

 

 

 

Now, we get the following output, which shows both labels, original and new. 

 

> summary(model.2a.ests) 

lavaan (0.4-12) converged normally after 35 iterations 

 

  Number of observations                            90 

 

  Estimator                                         ML 

  Minimum Function Chi-square                   22.879 

  Degrees of freedom                                 1 

  P-value                                        0.000 

 

Parameter estimates: 

 

  Information                                 Expected 

  Standard Errors                             Standard 

 

                   Estimate  Std.err  Z-value  P(>|z|) 

Regressions: 

  y1 ~ 

    x1       (b1)    -0.003    0.004   -0.763    0.446 

    x2       (b2)    -0.087    0.019   -4.643    0.000 

  y2 ~ 

    x2       (b3)    -3.363    0.896   -3.752    0.000 

 

Covariances: 

  y1 ~~ 

    y2       (b4)     0.945    0.432    2.189    0.029 

 

Variances: 

    y1                0.081    0.012 

    y2              195.119   29.087 

 

  

model.2a <- ‘y1 ~ b1*x1 + b2*x2 

             y2 ~ b3*x2      

             y1 ~~ b4*y2’ 



8 

 

     c. Fixing Parameter Values to Specific Quantities 
There are times when we want to be able to specify that particular parameters have fixed 

quantitative values. Lavaan allows us to do this using various options. Here is one approach: 

 

 

 

 
In this model statement, x1 is pre-multiplied by zero to set its value to zero. We can also 

accomplish this using a more elaborate and more flexible approach: 

 

 

 

 

 

Now we have labeled the parameter “b1” and then assigned it a value of 0 in a separate 

statement. This second specification will actually result in an explicit test of the constraint. 

 

> summary(model.2c.ests) 

lavaan (0.4-12) converged normally after 158 iterations 

 

  Estimator                                         ML 

  Minimum Function Chi-square                   23.329 

  Degrees of freedom                                 2 

  P-value                                        0.000 

 

Parameter estimates: 

 

  Information                                 Expected 

  Standard Errors                             Standard 

 

                   Estimate  Std.err  Z-value  P(>|z|) 

Regressions: 

  y1 ~ 

    x1       (b1)     0.000    0.000  169.705    0.000 

    x2       (b2)    -0.084    0.018   -4.611    0.000 

  y2 ~ 

    x2       (b3)    -3.362    0.896   -3.752    0.000 

 

Covariances: 

  y1 ~~ 

    y2       (b4)     0.798    0.426    1.872    0.061 

 

Variances: 

    y1                0.081    0.012 

    y2              195.119   29.087 

 

Constraints:                               Slack (>=0) 

    b1 - 0                                       0.000 

model.2b <- ‘y1 ~ 0*x1 + x2 

             y2 ~ x2      

             y1 ~~ y2’ 

model.2c <- ‘y1 ~ b1*x1 + x2 

             y2 ~ x2      

             y1 ~~ y2 

             b1 == 0’ 
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4. More Estimation Options 

     a. Estimating Intercepts 
By default, lavaan sets the scales for the variables to zero, placing the emphasis on the other 

parameters (e.g., path coefficients). One advantage for this default (along with the default of not 

estimating exogenous covariances) is that we don’t estimate as many parameters, which is 

helpful when sample sizes are limited. However, there certainly are times when we want the 

estimates for intercepts (e.g., for generating prediction equations). Obtaining these additional 

parameters is easy, as it only requires overriding a default in the estimation statement. Here we 

revisit model.1 and ask for intercepts (for endogenous variables) using the “meanstructure” 

statement. 

 

model.1.ests <- sem(model.1, data = data.frame,  

+ meanstructure = TRUE) 

 

Actually, we could accomplish the same thing by adding command statements of the form  

“x1 ~ 1” to specify means and intercepts  as parameters.  

 

 

 

 

 

Both approaches produce the following results: 
 

                   Estimate  Std.err  Z-value  P(>|z|) 

Regressions: 

  y1 ~ 

    x1                0.001    0.004    0.327    0.744 

    x2               -0.083    0.019   -4.440    0.000 

  y2 ~ 

    y1                9.910    5.083    1.950    0.051 

    x2               -2.531    0.976   -2.593    0.010 

 

Intercepts: 

    y1                1.004    0.233    4.318    0.000 

    y2               53.936    6.925    7.788    0.000 

 

Variances: 

    y1                0.080    0.012 

    y2              187.212   27.908 

  

model.1a <- ‘y1 ~ x1 + x2 

            y2 ~ y1 + x2 

            y1 ~ 1 

            y2 ~ 2’ 
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     b. Obtaining Estimates of Correlations/Covariances Between 

Exogenous Variables 
Lavaan follows the convention that the exogenous correlations/covariances are not estimated, but 

instead are taken as pre-estimated in the covariance matrix. This means, if we want to know what 

the covariances or correlations are between exogenous variables (and we will), we need to obtain 

them from the data or ask that they be estimated (override the default specification). All we need 

to do is include an additional statement, “fixed.x=FALSE”. Here we return to model.2 and 

simply ask for the x (exogenous) variables to be freely estimated instead of being fixed at the 

values found in the covariance matrix (e.g., “fixed.x=FALSE”).  

 

 

 

 

 

Now we obtain an estimate of the covariance in our lavaan output, as shown in bold below. 

 

                   Estimate  Std.err  Z-value  P(>|z|) 

Regressions: 

  y1 ~ 

    x1               -0.003    0.004   -0.763    0.446 

    x2               -0.087    0.019   -4.643    0.000 

  y2 ~ 

    x2               -3.363    0.896   -3.752    0.000 

 

Covariances: 

  y1 ~~ 

    y2                0.945    0.432    2.189    0.029 

  x1 ~~ 

    x2               -2.651    1.352   -1.961    0.050 

 

Variances: 

    y1                0.081    0.012 

    y2              195.119   29.087 

    x1               58.313    8.693 

    x2                2.700    0.402 
 

We could have obtained our estimate of the exogenous covariance between x1 and x2 in R 

simply by using the command “cov()” 

 

#estimating covariance between x1 and x2 directly 

print(cov(x1,x2)) 

#estimating the model 

model.2d.ests <- sem(model.2, data = data.mod1, fixed.x=FALSE) 
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Of course, we can also ask for the full covariance matrix using the following statement. 

### Ask for the full covariance matrix 

print(cov(data.mod1)) 

 

5. More Options for Extracting Results 
Lavaan has numerous options for obtaining additional output from the model object. Here I focus 

on 5 key types of information that are commonly required for reporting results and evaluating 

models. 

 

     a. Extracting the Parameter Estimates 
Lavaan has several extraction functions for pulling specific information from the estimated 

model object. Here I demonstrate one of the most basic, the “parameterEstimates” function. 

Below I will demonstrate other functions at appropriate places. For model.1, we can extract just 

the parameter estimates using the following syntax: 

 

model.1.ests <- sem(model.1, data = data.mod1)  

parameterEstimates(model.1.ests)                

 

> parameterEstimates(model.1.ests) 

  lhs op rhs     est     se      z pvalue ci.lower ci.upper 

1  y1  ~  x1   0.001  0.004  0.327  0.744   -0.007    0.009 

2  y1  ~  x2  -0.083  0.019 -4.440  0.000   -0.119   -0.046 

3  y2  ~  y1   9.910  5.083  1.950  0.051   -0.052   19.873 

4  y2  ~  x2  -2.531  0.976 -2.593  0.010   -4.444   -0.618 

5  y1 ~~  y1   0.080  0.012  6.708  0.000    0.057    0.104 

6  y2 ~~  y2 187.212 27.908  6.708  0.000  132.513  241.911 

7  x1 ~~  x1  58.314  0.000     NA     NA   58.314   58.314 

8  x1 ~~  x2  -2.652  0.000     NA     NA   -2.652   -2.652 

9  x2 ~~  x2   2.700  0.000     NA     NA    2.700    2.700 

 

Note we get some additional information, the confidence intervals.  

 

     b. Standardized Estimates 
We can request standardized coefficients very easily by adding a statement to the summary 

command. Here we return to model.1 and request standardized parameter estimates and r-

squares. 

 

summary(model.1.ests, standardized=TRUE, rsq=TRUE) 



12 

 

which produces the following (only partial output shown). 

                   Estimate  Std.err  Z-value  P(>|z|)   Std.lv  Std.all 

Regressions: 

  y1 ~ 

    x1                0.001    0.004    0.327    0.744    0.001    0.032 

    x2               -0.083    0.019   -4.440    0.000   -0.083   -0.430 

  y2 ~ 

    y1                9.910    5.083    1.950    0.051    9.910    0.208 

    x2               -2.531    0.976   -2.593    0.010   -2.531   -0.277 

 

Variances: 

    y1                0.080    0.012                      0.080    0.808 

    y2              187.212   27.908                    187.212    0.830 

 

R-Square: 

    y1                0.192 

    y2                0.170 

 
Note that the column “Std.lv” only standardizes any latent variables in the model (none in 

model.1, so that column is same as “Estimate” column). “Std.all” results are what we want in 

most cases.  

 

Lavann has alternative methods for extracting standardize results and as stated before, these 

alternative methods can be very helpful when working in R because they yield objects containing 

key information. Here is a function “standardizedSolution” to extract standardized results. 

 

> standardizedSolution(model.1.ests) 

 

  lhs op rhs est.std se  z pvalue 

1  y1  ~  x1   0.032 NA NA     NA 

2  y1  ~  x2  -0.430 NA NA     NA 

3  y2  ~  y1   0.208 NA NA     NA 

4  y2  ~  x2  -0.277 NA NA     NA 

5  y1 ~~  y1   0.808 NA NA     NA 

6  y2 ~~  y2   0.830 NA NA     NA 

7  x1 ~~  x1   1.000 NA NA     NA 

8  x1 ~~  x2  -0.211 NA NA     NA 

9  x2 ~~  x2   1.000 NA NA     NA 

 

Here, “lhs”=left-hand-side, “op”=operator, “rhs”=right-hand-side, and “est.std”=standardized 

estimates. Note that only the raw (unstandardized) estimates have standard errors and related 

properties reported. 
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     c. Model Fit Statistics 
Also of critical importance is the ability to obtain a more complete reporting of model fit 

statistics. Again, we have two options, one within the “summary” command and another separate 

function. Again for model.1, 

 

summary(model.1.ests, fit.measures=TRUE) 

yields the following: 

lavaan (0.4-12) converged normally after 40 iterations 

 

  Number of observations                            90 

 

  Estimator                                         ML 

  Minimum Function Chi-square                   23.222 

  Degrees of freedom                                 1 

  P-value                                        0.000 

 

Chi-square test baseline model: 

 

  Minimum Function Chi-square                   59.220 

  Degrees of freedom                                 5 

  P-value                                        0.000 

 

Full model versus baseline model: 

 

  Comparative Fit Index (CFI)                    0.590 

  Tucker-Lewis Index (TLI)                      -1.049 

 

Loglikelihood and Information Criteria: 

 

  Loglikelihood user model (H0)               -858.441 

  Loglikelihood unrestricted model (H1)       -846.830 

 

  Number of free parameters                          6 

  Akaike (AIC)                                1728.882 

  Bayesian (BIC)                              1743.881 

  Sample-size adjusted Bayesian (BIC)         1724.945 

 

Root Mean Square Error of Approximation: 

 

  RMSEA                                          0.497 

  90 Percent Confidence Interval          0.335  0.681 

  P-value RMSEA <= 0.05                          0.000 

 

Standardized Root Mean Square Residual: 

 

  SRMR                                           0.134 
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We can also use the extractor function “fitMeasures”. 

 

fitMeasures(model.1.ests)                

 

which produces 

 

> fitMeasures(model.1.ests) 

            chisq                df            pvalue    baseline.chisq  

           23.222             1.000             0.000            59.220  

      baseline.df   baseline.pvalue               cfi               tli  

            5.000             0.000             0.590            -1.049  

             logl unrestricted.logl              npar               aic  

         -858.441          -846.830             6.000          1728.882  

              bic            ntotal              bic2             rmsea  

         1743.881            90.000          1724.945             0.497  

   rmsea.ci.lower    rmsea.ci.upper      rmsea.pvalue              srmr  

            0.335             0.681             0.000             0.134 

 

We can be more surgical with our function and ask for specific measures: 

 

fitMeasures(model.1.ests, “bic”)     

 

which yields 

 

> fitMeasures(model.1.ests, "bic") 

     bic  

1743.881             

 

There are also “BIC” and “AIC” functions. 

 

> AIC(model.1.ests) 

[1] 1728.882 

> BIC(model.1.ests) 

[1] 1743.881 

> 

 

Not all fit measures can be accessed in this way. 
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     d. Modification Indices 
Diagnosing lack of fit in models is of critical importance. In classical SEM, model fit is 

evaluated via discrepancies beween observed and model-implied covariances, which are 

summarized using the above fit measures. Specific discrepancies are also of vital importance. 

Again, there are two approaches. 

 

summary(model.1.ests, modindices=TRUE) 

which yields: 

   lhs op rhs     mi     epc sepc.lv sepc.all sepc.nox 

1   y1 ~~  y1  0.000   0.000   0.000    0.000    0.000 

2   y1 ~~  y2 20.468 -53.694 -53.694  -11.331  -11.331 

3   y1 ~~  x1     NA      NA      NA       NA       NA 

4   y1 ~~  x2  0.009 851.155 851.155 1642.024  851.155 

5   y2 ~~  y2  0.000   0.000   0.000    0.000    0.000 

6   y2 ~~  x1 20.419  48.615  48.615    0.424   48.615 

7   y2 ~~  x2 20.468  49.621  49.621    2.010   49.621 

8   x1 ~~  x1  0.000   0.000   0.000    0.000    0.000 

9   x1 ~~  x2  0.000   0.000   0.000    0.000    0.000 

10  x2 ~~  x2  0.000   0.000   0.000    0.000    0.000 

11  y1  ~  y2 20.468  -0.287  -0.287  -13.657  -13.657 

12  y1  ~  x1  0.000   0.000   0.000    0.000    0.000 

13  y1  ~  x2  0.000   0.000   0.000    0.000    0.000 

14  y2  ~  y1  0.000   0.000   0.000    0.000    0.000 

15  y2  ~  x1 20.468   0.875   0.875    0.445    0.058 

16  y2  ~  x2  0.000   0.000   0.000    0.000    0.000 

17  x1  ~  y1  0.000   0.000   0.000    0.000    0.000 

18  x1  ~  y2 17.594   0.224   0.224    0.440    0.440 

19  x1  ~  x2  0.000   0.000   0.000    0.000    0.000 

20  x2  ~  y1  0.000   0.000   0.000    0.000    0.000 

21  x2  ~  y2  2.520   0.033   0.033    0.298    0.298 

22  x2  ~  x1  0.000   0.000   0.000    0.000    0.000 

 

Or we can get the same information using, 

 

modindices(model.1.ests) 

 

This second approach gives us some additional flexibility, for example we can extract only those 

indices that suggest directed arrows be added (i.e., operator is ~). 

 

mi <- modindices(model.1.ests) 

print(mi[mi$op == "~",]) 

 

Now we only get the following: 
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   lhs op rhs     mi    epc sepc.lv sepc.all sepc.nox 

1   y1  ~  y2 20.468 -0.287  -0.287  -13.657  -13.657 

2   y1  ~  x1  0.000  0.000   0.000    0.000    0.000 

3   y1  ~  x2  0.000  0.000   0.000    0.000    0.000 

4   y2  ~  y1  0.000  0.000   0.000    0.000    0.000 

5   y2  ~  x1 20.468  0.875   0.875    0.445    0.058 

6   y2  ~  x2  0.000  0.000   0.000    0.000    0.000 

7   x1  ~  y1  0.000  0.000   0.000    0.000    0.000 

8   x1  ~  y2 17.594  0.224   0.224    0.440    0.440 

9   x1  ~  x2  0.000  0.000   0.000    0.000    0.000 

10  x2  ~  y1  0.000  0.000   0.000    0.000    0.000 

11  x2  ~  y2  2.520  0.033   0.033    0.298    0.298 

12  x2  ~  x1  0.000  0.000   0.000    0.000    0.000 

 

     e. Residual Covariances 
In addition to looking at modification indices, it can be useful sometimes to look at residuals. 

Here we are talking about residuals in the covariance matrix, not in the data values themselves (a 

topic I deal with elsewhere). We can use the “resid” function for this purpose, which includes the 

option of looking at the standardized residuals. 

 

#getting residuals 

resid(model.1.ests, type="standardized") 

 

which yields, 

 

> resid(model.1.ests, type="standardized") 

$cov 

   y1    y2    x1    x2    

y1 0.000                   

y2 0.000 0.004             

x1 0.000 3.942 0.000       

x2 0.000 0.000 0.000 0.000 
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